Asymptotic density of collision orbits in the Restricted Planar Circular 3 Body Problem

Marcel Guàrdia, Vadim Kaloshin, Jianlu Zhang

The 3 body problem

• Consider three bodies q_1 , q_2 and q_3 with masses m_1 , m_2 , $m_3 > 0$,

$$\frac{d^2q_i}{dt^2} = \sum_{j=1, j \neq i}^{3} m_j \frac{q_j - q_i}{\|q_j - q_i\|^3}, \qquad q_i \in \mathbb{R}^3$$

- Long term behavior?
- Chazy (1922): Final motions Behavior of the bodies $q_k(t)$ as $t \to \pm \infty$.

Chazy classification

- Types of final motions:
 - \mathcal{H}^+ : $|r_k| \to \infty$, $|\dot{r}_k| \to c_k \neq 0$ as $t \to +\infty$;
 - \mathcal{HP}_k^+ : $|r_k| \to \infty$, $|\dot{r}_k| \to 0$, $|\dot{r}_i| \to c_i > 0$ $(i \neq k)$;
 - \mathcal{HE}_k^+ : $|r_k| \to \infty$, $|\dot{r_i}| \to c_i > 0$ $(i \neq k)$, $\sup_{t > 0} |r_k| < \infty$;
 - \mathcal{PE}_k^+ : $|r_k| \to \infty$, $|\dot{r}_i| \to 0$ $(i \neq k)$, $\sup_{t \geq 0} |r_k| < \infty$;
 - \mathcal{P}_+ : $|r_k| \to \infty$, $|\dot{r}_k| \to 0$;
 - \mathcal{B}^+ : $\sup_{t>0} |r_k| < \infty$;
 - \mathcal{OS}^+ : $\limsup_{t\to\infty} \max_k |r_k| = \infty$, $\liminf_{t\to\infty} \max_k |r_k| < \infty$.
- Classification for trajectories defined for all time.
- Some orbits are not defined for all time: orbits hitting collisions.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ からぐ

Collision orbits

$$rac{d^2q_i}{dt^2} = \sum_{j=1, j
eq i}^3 m_j rac{q_j - q_i}{\|q_j - q_i\|^3}, \qquad q_i \in \mathbb{R}^2$$

- Collision set: $C = \{q_1 = q_2\} \cup \{q_1 = q_3\} \cup \{q_2 = q_3\}$
- Collision orbit: orbit which hits a collision at some time $t = t^*$.

Herman conjecture

- Fix the center of mass at the origin.
- Reparameterize the flow so that it takes infinite time to get to collision.
- Non-wandering set: Consider a dynamical system $\phi: X \to X$, $x \in X$ is non-wandering if for every open neighborhood U of x and any N satisfies $\phi^n(U) \cap U \neq \emptyset$ for some n > N.
- Herman question: Is the non-wandering set nowhere dense in all energy levels?
- In particular: Is the set of bounded orbits nowhere dense?

How abundant/rare are collision orbits?

- Saari 1970's (also Fleischer & Knauf 2018): The set of collision orbits has measure zero.
- Alexeev conjecture (1981): Is there an open set \mathcal{U} in phase space posessing a dense subset $\mathcal{D} \subset \mathcal{U}$ whose points lead to collision?
- This conjecture goes back to Siegel.
- If Alexeev conjecture is true, would imply a dense set of bounded orbits.
- Could Alexeev conjecture lead to a negative answer to Herman conjecture?
- To understand Alexeev conjecture: consider the case $m_2 = m_3 = 0$.

The case: $m_2 = m_3 = 0$

- Body 1 does not move.
- Body 2 and 3

$$\frac{d^2q_i}{dt^2} = m_1 \frac{q_1 - q_i}{\|q_1 - q_i\|^3}$$

form two uncoupled 2BPs.

Place them on ellipses.

- Take ellipses that intersect transversally.
- They form an open set in phase space foliated by 2-tori.
- All solutions are either periodic or quasi-periodic

The case: $m_2 = m_3 = 0$

- If periods of q₂ and q₃ are inconmensurable, collision orbits are dense in this T².
- Periods is $2\pi a^{3/2}$ where a is the semimajor axis of the ellipse.
- For a dense set of a's the periods are inconmensurable.

• Tori with dense collision orbits are dense in an open set.

General case: $m_2, m_3 > 0$

- Alexeev: Does density still hold?
- For $m_2, m_3 > 0$ small, this is not a regular perturbation problem.
- The system blows up in a small neighborhood of collisions.
- We consider a simpler model: The Restricted Planar Circular 3 Body problem.

The Restricted Planar Circular 3 Body problem

- Three bodies of masses $1-\mu$, μ and 0 under the effects of the Newtonian gravitational force.
- Primaries q_1 and q_2 orbiting on circles.
- Rotating coordinates:
 - ullet Primaries at $q=(-\mu,0)$ and $q=(1-\mu,0)$
 - ullet Dynamics of the third body q is given by the 2 dof Hamiltonian

$$H(q, p, t) = \frac{\|p\|^2}{2} - (p_2q_1 - p_1q_2) - \frac{1-\mu}{\|q+\mu\|} - \frac{\mu}{\|q-(1-\mu)\|}$$

• Phase space: $\mathbb{R}^4 \setminus \{\text{collisions}\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Collisions are asymptotically dense

Theorem (M. G. – V. Kaloshin – J. Zhang)

Consider the RPC3BP. There exists an open set $\mathcal{U} \subset \mathbb{R}^4$ and $\tau > 0$, independent of μ , such that, for μ small enough, there is a μ^{τ} -dense set $\mathcal{D} \subset \mathcal{U}$ whose points lead to collision.

- μ^{τ} dense $\equiv \mu^{\tau}$ neighborhoods of all points in \mathcal{D} cover \mathcal{U} .
- So far τ can be taken $\tau = \frac{1}{17 + \sigma}$ for any $\sigma > 0$.
- \mathcal{U} gives open sets in the energy level H = h for energies

$$h \in \left(-\frac{3}{2}, \sqrt{2}\right)$$
.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ からぐ

The set \mathcal{U}

- ullet The set ${\cal U}$ can be easily characterized in terms of Delaunay coordinates:
 - L square root of the semimajor axis of the ellipse.
 - *G* is the angular momentum.
 - \bullet ℓ is the mean anomaly.
 - ullet g is the argument of the perihelion with respect the primaries line.
- ullet Then ${\mathcal U}$ is the interior of any compact set contained in

$$\mathcal{V} = \left\{ (\ell, g, L, G) \in \mathbb{T}^2 \times (0, +\infty) \times (-L, 0) \cup (0, L) : \right.$$
$$\left. \frac{G^2}{1+e} < 1 < \frac{G^2}{1-e}, \quad H(\ell, g, L, G) \in \left(-\frac{3}{2}, \sqrt{2}\right) \right\}.$$

where
$$e = \sqrt{1 - \frac{G^2}{I^2}}$$
.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り Q C

The set \mathcal{U}

- $\mathcal U$ corresponds to where in the unperturbed case ($\mu=0$) the ellipses of the two bodies intersect transversally.
- In particular we only consider collisions with the small primary at $(1 \mu, 0)$.
- The same set were the existence of second species periodic solutions are looked for (Niederman, Marco, Bolotin, McKay,...)
- Collisions with the massive primary Punctured tori: Chenciner, Llibre, Féjoz, Zhao.

Other almost density results: punctured tori

 Punctured tori also give an almost density result of collision orbits for the RP3BP and the full 3BP.

• However, for the RP3BP the corresponding set $\mathcal U$ is very small (either its measure goes to zero as $\mu \to 0$ or two bodies are arbitrarily close).

• For the full 3BP almost density in "big" sets if one places one of the bodies very far away.

A disproof of a weak version of Herman conjecture

- Herman question: Is the non-wandering set nowhere dense in all energy levels?
- Consider a a dynamical system $\{\phi_t\}_{t\in\mathbb{R}}$ defined on a topological space X. Then, a point $x\in X$ is called δ -non-wandering, if for any neighborhood V of it containing the δ -ball $B_{\delta}(x)$, there exists T>1 such that $\phi_T(V)\cap V\neq\emptyset$.

Theorem (M. G. – V. Kaloshin – J. Zhang)

Any point belonging to the open set \mathcal{U} is $\mathcal{O}(\mu^{\tau})$ -non wandering under the flow ϕ_t of the RPC3BP.

More concretely, for any $z \in \mathcal{U}$, we can find a $\mathcal{O}(\mu^{\tau})$ -neighborhood V_{μ} of it and times $0 < T'_{\mu} < T_{\mu}$ such that $\phi_{T'_{\mu}}(V_{\mu})$ is $\mathcal{O}(\mu^{\tau})$ -close to a collision and $\phi_{T_{\mu}}(V_{\mu}) \cap V_{\mu} \neq \emptyset$.

Marcel Guàrdia (UPC) 15 / 27

Summarizing

- For the RPC3BP, at μ^{τ} scales for $\tau \leq \frac{1}{17 + \sigma}$, $\sigma > 0$:
 - Alexeev conjecture is correct
 - Herman conjecture is not.

- What happens for the true conjectures for the full 3BP?
- Are they incompatible?

Some ideas of the proof of almost density of collisions

- Take any point $P \in \mathcal{U}$: we want to find $Q \mu^{\tau}$ -close to it hitting a collision.
- Case $\mu = 0$:
 - ullet $\mathcal U$ foliated by 2 dimensional tori.
 - Choose Q in an orbit in a non-resonant torus hitting collision (they are dense).
- Q may need a very long time to hit collision.
- Case $\mu > 0$: Choose a $\mu^{3\tau}$ -long curve μ^{τ} -close to P and show that a point in this curve hits a collision.

Some ideas of the proof: three regimes

- Far from collision (points $\mu^{3\tau}$ away from collision) the zero mass body q (basically) only notices the main primary: nearly integrable setting.
- Transition zone: q notices the two primaries but orbits spend there very short time.
- Small neighborhood of the collision ($\rho\mu^{1/2}$ neighborhood of the collision with $\rho\gg 1$): q (basically) only notices the small primary A different nearly integrable setting.

Regime 1: far from collision

- We are in a nearly integrable regime.
- Problem: the point may need a very long time to reach Regime 2.
- We apply KAM.
- KAM is global: it cannot be applied directly due to the collisions (the Hamiltonian blows up at collision!)
- Remove the collision by multiplying H by a bump function supported at $\mu^{3\tau}$ -ball centered at the collision.
- The modified Hamiltonian is close to a 2 body problem (in low regularity).

Regime 1: far from collision

- We want to apply KAM with lowest possible regularity: the more regularity, the worse estimate on the Hamiltonian with bump functions.
- ullet Constant type frequencies are γ -dense

$$|q\omega - p| \ge \frac{\gamma}{|q|}.$$

- We apply Herman version of KAM (for $C^{3+\sigma}$ maps and constant type frequencies): tori are γ -dense.
- Each torus has two (removed) collisions.
- Orbits on the tori are true orbits of the RPC3BP as long as do not intersect a $\mu^{3\tau}$ neighborhood of the collisions.

Marcel Guàrdia (UPC) 20 / 27

Regime 1: How to reach well Regime 2

- We wanted: any point P has a $\mu^{3\tau}$ -long curve μ^{τ} -close to it and a point in this curve hits collision.
- ullet Take a KAM torus $\mu^{ au}$ close to P and $\mu^{3 au}$ -long curve in this torus

Regime 1: How to reach well Regime 2

 The forward orbit of the small curve has to hits "well" the puncture around one of the collision so that it can be sent forward to Regimes 2 and 3.

Well:

- The image of the segment hits the half of the boundary of the neighborhood where the velocity is pointing inwards.
- The orbit cannot have intersected before the punctures around collisions (we want a true orbit of RPC3BP!).
- Moreover: the tangent vectors at the hitting points are close to parallel and velocity is of order ~ 1 .

Marcel Guàrdia (UPC) 22 / 27

Regime 1: far from collision

- We want to optimize the density coefficient
- Small γ : gives better density of tori.
- To have the segment hitting well we need to avoid close encounters with collisions before a good hitting.
- ullet We need a strong Diophantine condition $o \gamma$ big.
- KAM + Non-homogeneous Dirichlet Theorem leads to

$$\gamma = \mu^{\tau}$$
 with $\tau = \frac{1}{17 + \sigma}$, $\sigma > 0$.

Regime 2

- Regime 2: $\mu^{3\tau}$ -close to collision and $\rho\mu^{1/2}$ -far to collision with $\rho\gg 1$.
- \bullet It is a small annulus of width $\mu^{3\tau}$ where the two bodies are "not too close".
- We use the true RPC3BP.
- ullet Velocity of order ~ 1 (collisions are "far enough" to control it).
- Thus: the flow is almost tubular.
- Conclusion: the propagated segment goes from the outer to the inner boundary with almost constant velocity.

Regime 3

• The influence of the small primary is dominant.

 Flow far from tubular and close to a new 2 body problem (close to collision).

Apply Levi-Civita regularization

Analyze backward orbits departing from collisions

Levi Civita coordinates

In (scaled) Levi-Civita coordinates, the RPC3BP becomes

$$K(z, w) = \frac{1}{2}(|w|^2 - |z|^2) + \mu^{1/2}\mathcal{O}_4(z, w)$$

where z = 0 is the collision set.

- Run backwards the collision orbits to the boundary between Regimes 2 and 3.
- Restricting to the level of energy, they give a curve at the boundary.
- Consider the incoming curve from Regime 2 in these coordinates.
- Plot these two curves in the plane (arg(z), arg(w)).

The collision orbit

- Blue: the incoming curve coming from Regime 1 and 2.
- Red: backward orbits of collision orbits.

They are both \mathcal{C}^0 curves: they must intersect.